Solid State Structural Repair (S3R) for Naval Aircraft

CSAT 2022

Craig Matzdorf
Naval Air Warfare Center, Aircraft Division
Air Systems Group
June 21, 2022

What is S3R?

- The ability to repair aluminum (and other metals) using non-melting processes
 - Builds upon dimensional repair knowledge and capability
 - Recovery of structural life is goal
 - Anticipated (for now) to only be a depot-level repair
- NAVAIR is supporting the development of two processes to enable S3R:
 - Cold spray (high-pressure systems)
 - Friction stir deposition (FSD) and related methods
- Focus is on three repair scenarios:
 - Blended surface repairs (typically from corrosion damage)
 - Edges
 - Holes
- Current investment is focused on 7050 and 7075 aluminum alloys based on prevalence in aircraft structure
 - Current TRL is 5 for structural repair cold spray and 4 for FSD
 - On- and off-aircraft options being pursued

S3R Objective

Impact: Improved Fleet Readiness

Develop and transition structural repairs for aluminum alloys using cold spray and friction stir deposition processes

Benefits

Component life extension

Time and cost savings compared to new component purchase or manufacture at FRC

Repair on Aircraft, Turn Around Time reduction

Key process enabler for reliability degraders

Desired Outcomes

- Demonstrate ability to apply repair onto H-1, V-22 and F/A-18 prototypes
- ☐ Determine and provide fixed process parameters for
 - ✓ Fixed HP cold spray
 - ☐ Portable HP cold spray
- □ Achieve threshold repair requirements to enable prototype repairs
 - √ 7050-T7451/HP cold spray
 - √ 7075-T641/HP cold spray
 - ☐ 7050-T7451/Friction stir process (new for FY22)

S3R Team

Government

PMA276 (H-1), PMA275 (V-22) and PMA265 (F/A-18) programs and FSTs

User, part identification and repair certification

Fleet Readiness Center- East (FRCE), FRC-Southwest (FRCSW) & FRC Southeast (FRCSE)

 Process implementation, repair design and certification

NAWC-AD and NSWC-CD

- Project and technical coordinator, technical warrant holders for structures, metals processes, NDI, corrosion and coatings
- Mechanical and corrosion testing, NDI development, certification software tools

Government

ONR

Sponsor, programmatic and technical coordination and guidance

Partners

SAFE

 Mechanical properties, test requirements, component repair prototyping

Penn State- ARL

Process parameters and optimization; NDI

University of Alabama

Powder improvements, LACS, and process optimization

Extended Team

SBIRs

GEM/Va Tech

 Develop Friction Stir Deposition for divot and hole repair

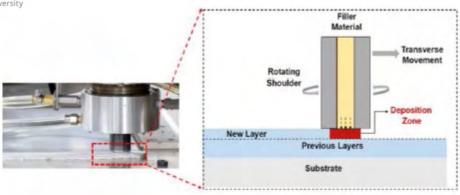
VRC/SDSM&T

Develop High-Pressure Cold Spray
 Deposition for divot and hole repair

Phase II efforts underway

S3R Friction Stir Aluminum Repair Thrust

BYU


 Develop multiple Friction Stir methods for divot and hole repairs

MELD

- Develop MELD FSD to meet NAVAIR S3R requirements
- Deliver L3 system at the end of the contract

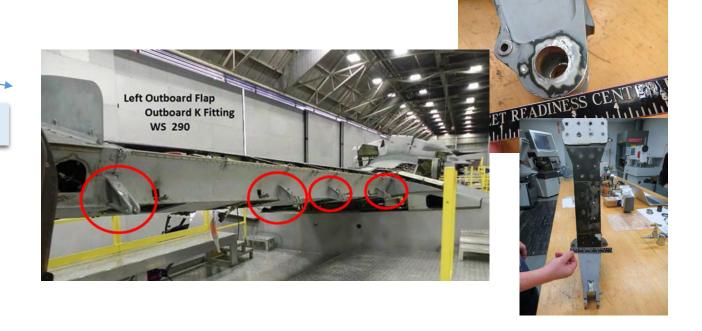
Efforts underway

S3R Targeted Repairs

PMA276: H-1 program

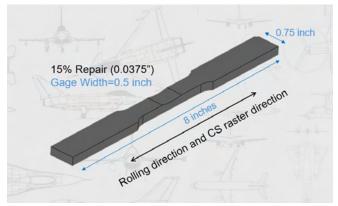
- Objective: Static load requirement
 - Skid tube

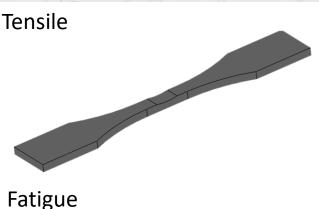
PMA275: V-22 program


Objective: Dynamic load requirement

- K-fitting

PMA265: F/A-18 program

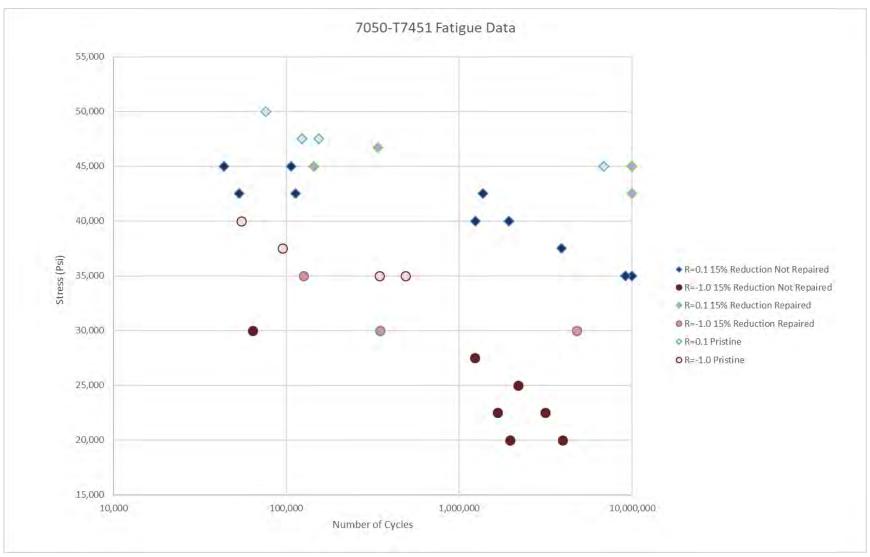

- Objective: Dynamic load requirement
 - Trailing edge flap (TEF) hinges



Repair Process Development

- ✓ Fatigue life improvement is primary requirement used for process development
- ✓ Standard coupons and test methods in place- important achievement which supports all related efforts

Images courtesy of SAFE


Field representative repairs (fatigue)

- 0.075 inch deep divot (30%) with 20:1 blend ratio
- 5/16" hole (first nominal oversize allowed for ¼" hole)

7050-T7451 fatigue performance 15% reduction and repair, SAFE coupon

- New lot of 7050 (SAFE and Pax)
- Repaired by Mid-American using VRC Gen III "locked" process

Prioritized Repair Requirements Status

Priority	Requirement	Minimum	Threshold	Goal
1a	Fatigue (Stress) Life Improvement:	10%, using maximum	25%, using maximum	Restore to original design
	Blend Repair (@10k cycles)	blend (divot) limit	blend (divot) limit (30%)	life
1b	Fatigue (Stress) Life Improvement:	10%, using maximum	25%, using maximum	Restore to original design
	Edge Repair	repair limit	repair limit	life
1c	Fatigue (Stress) Life Improvement:	10%, using maximum	25%, using maximum hole	Restore to original design
	Hole Repair	hole repair limit	repair limit	life
2a	Ultimate Tensile Strength of Repaired	70% of original strength		Restore to original
	Specimen	(no harm repair)	90% of original strength	strength
2b		65% of original strength		Restore to original
	Yield Strength of Repaired Specimen	(no harm repair)	90% of original strength	strength
2c	Modulus of Elasticity of Repaired			
	Specimen	Similar to baseline	Similar to baseline	Similar to baseline
2d	% Elongation	TBD	TBD	TBD
3	Porosity	1%	0.50%	0.10%
4	Microhardness (of repaired substrate)	80% of base metal	90% of base metal	100% of base metal
5	Bend Adhesion	No loss of adhesion	No loss of adhesion, minor cracking	No loss of adhesion, no cracking
6	Thermal Control (if needed)	Passive/None	Active/Compressed Air	Active/Liquid/Cold plate
7				Full component
	NDI detection capability	None	Partial	requirement
8		Will support structural	Will support structural	Will support structural
	Fatigue crack initiation site(s)	analysis	analysis	analysis
9		For informational	For informational	For informational
	Microstructure	purposes	purposes	purposes
10		For informational	For informational	For informational
	Residual Stress	purposes	purposes	purposes

Process: VRC Gen III HP Cold Spray System

Substrate: 7050-T7451 aluminum

Recent Progress: Skid Tubes

- ✓ Two scrap skid tubes sectioned for analysis and sub-scale repairs and testing
- ☐Mid-American repair of sectioned piece(s)
- □ Identification of candidate full-scale skid tube(s)
- □ Repair of full-scale skid tube(s) at Mid-American
- ✓ Initial data requirements established to enable full-scale, on-aircraft skid tube field testing
- ☐ Data collection: coupon and sub-sections
- ☐ Tech warrant holders' review of data
- ☐ Tech warrant holders' approval to fly repaired skid tube(s)

Possible, pending initial data

K-fitting status

- ✓ Three scrap K-fittings received from FRCE
- ☐ Based on progress for fatigue life of repaired coupons, assess potential repair scenarios
- ☐ Identify prototype repair(s)
- ☐ Prototype off-aircraft repair of sub-scale or full-scale component at Mid-American or PSU-ARL
- ☐ Identify data and test requirements to verify static and dynamic performance of repairs
- Data collection
- ☐ Tech warrant holders' review of data
- ☐ Identify path to on-aircraft component testing
- Plan for on-aircraft repairs (beyond the FNC)

possible, pending initial data

Projected S3R Deployment Timeline

High Pressure commercial repair capability available today at MAA/VRC

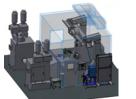
Skid tube, K-fitting, Hinge prototypes

Additional prototypes

Skid tube, K-fitting, Cobox, T-64 housing

First deployed structurally repaired component

2021


2022

2023

2024

Low Pressure Systems in place at all 3 FRCs
- Supports sacrificial coating repair overlayer

FRC validation of Prototype repairs using their CS systems

High Pressure Systems planned to be in place and operational by end of CY22 for FRCE and CY23 for FRCSE

First MELD FSD system- location TBD

Portable, robotic HP cold spray system

Long Term Plan Ahead

- Continue maturing processes and developing underlying materials data to support deployment
 - ONR FNC completes ~April 2023
 - SBIR efforts- ongoing and new
 - AERMIP project in place for FY22-24 (additional prototyping and field testing)
 - Additional funds for FY23+ are in work
- Complete and promulgate 5-yr S3R plan
 - Test methods and material characterization
 - Repair methods: cold spray and friction stir deposition+
 - Analysis and modeling (including data warehousing)
 - Capability