Self-driving Convoy Operation

Navy SBIR 23.2 - Topic N232-080
MCSC - Marine Corps Systems Command
Pre-release 4/19/23   Opens to accept proposals 5/17/23   Closes 6/14/23 12:00pm ET    [ View Q&A ]

N232-080 TITLE: Self-driving Convoy Operation

OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Sustainment;Trusted AI and Autonomy

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), 22 CFR Parts 120-130, which controls the export and import of defense-related material and services, including export of sensitive technical data, or the Export Administration Regulation (EAR), 15 CFR Parts 730-774, which controls dual use items. Offerors must disclose any proposed use of foreign nationals (FNs), their country(ies) of origin, the type of visa or work permit possessed, and the statement of work (SOW) tasks intended for accomplishment by the FN(s) in accordance with the Announcement. Offerors are advised foreign nationals proposed to perform on this topic may be restricted due to the technical data under US Export Control Laws.

OBJECTIVE: Develop and demonstrate reliable autonomous convoy operations within narrow and confined spaces including negative obstacles such as roadside ditches.

DESCRIPTION: The Navy/Marine Corps Expeditionary Ship Interdiction System (NMESIS) provides a ground based anti-ship capability. The NMESIS utilizes an unmanned launcher based upon the Joint Light Tactical Vehicle (JLTV) chassis called the Remotely Operated Ground Unit Expeditionary Fires (ROGUE-Fires) carrier. ROGUE-Fires has several operational modes including a Leader-Follower mode which autonomously follows the path of the Leader Vehicle, which is a JLTV Heavy Gun Carrier equipped with the NMESIS Leader Kit. Leader-Follower convoy operations function well on wide roads but encounter difficulties on narrow roads, requiring switching to remote control operations. Remote control operation is designed for use at very slow speeds for parking and maintenance and are not suitable for convoy operations.

The current autonomy system relies on a combination of forward looking and backup cameras, RADAR, and LIDAR. The March Unit Leader (MUL) vehicle provides a video patch for the following ROGUE-Fires vehicles to follow. The MUL path is 18 feet wide, and the autonomy software keeps each ROGUE-Fires vehicle within the path. However, many secondary roads, dirt roads, and paths are much narrower than primary roads. This puts ROGUE-Fires vehicles in danger of leaving the road surface, possibly getting stuck in ditches, and hitting obstacles.

ROGUE-Fires utilizes sofrware derived from U.S. Army DEVCOM Ground Vehicle Systems Center (GVSC) Expeditionary Leader-Follower (ExLF). The Program Office does not have the authority to release this software.

This SBIR topic seeks to develop and demonstrate safe and reliable leader/follower convoy operations on secondary roads, trails, and paths narrower than 18 feet, ideally down to 8 feet. The command to utilize a narrower MUL path shall be user selectable by an operator in the Lead Vehicle. It is expected that operation under these conditions will be done at reduced speeds but still faster than having an operator tele-operate the ROGUE-Fires vehicles at walking speed. Demonstration utilizing RTK software is not required, but is acceptable. We anticipate having the software converted to the ROGUE-Fire Kernel in Phase II or Phase III. Adding additional sensors, such as additional cameras, LIDAR/RADAR, or SONAR is acceptable but cost and logistical burden will also be considered.


  1. In the Description, there is discussion on how the ROGUE-Fires autonomy system functions. Currently for Leader/Follower, the Leader vehicle creates a MUL path map utilizing LIDAR which is sent to the Follower vehicles. Use of the other sensors in addition to or in lieu of LIDAR is acceptable.
  2. Methods for navigating in narrow and confined spaces in convoy operations do not need to rely on the current MUL Leader/Follower construct - meaning the Leader vehicle providing a map to the follower vehicle. Other methods which utilize the MUL method or operate without the Leader vehicle providing a map are acceptable.

PHASE I: Develop concepts for Autonomous Narrow and Confined Space Convoy Operations, detailing required sensors, transition between operating modes (path widths), fault tolerance, and failure modes. Concepts and Models will detail performance on various drive surfaces, weather conditions, on-road and roadside obstances including vegetation, and negative obstacles such as potholes and roadside ditches. System trade options, including sensor types, autonomous methods, and performance impacts will be completed.

Provide a Phase II development plan with performance goals and key technical milestones, and that will address technical risk reduction.

PHASE II: Based on the results of Phase I and the Phase II development plan, develop a prototype system. The prototype will be evaluated to determine its capability in meeting the performance goals defined in the Phase II development plan and the Marine Corps requirements for Autonomous Narrow and Confined Space Convoy Operations. Performance will be demonstrated through prototype evaluation and modeling or analytical methods over the required range of parameters including numerous deployment cycles. Evaluation results will be used to refine the prototype into an initial design that will meet Marine Corps requirements. Prepare a Phase III development plan to transition the technology to Marine Corps use.

PHASE III DUAL USE APPLICATIONS: Support the Marine Corps in transitioning the technology for Marine Corps use. Develop the Autonomous Narrow and Confined Convoy Operations system for evaluation to determine its effectiveness in an operationally relevant environment. Support the Marine Corps for test and validation to certify and qualify the system for Marine Corps use.

The potential for commercial and dual-use is significant. Leader/follower convoy technology in tight quarters is directly applicable to airport cargo operations, warehousing, and future road transport, which would result in fuel and labor savings.


  1. U.S. Army Combat Capabilities Development Command "Ground Vehicle Systems Center ROS-Military ROS 2 Overview", 30 September 2020
  2. U.S. Army Tank Automotive Research, Development And Engineering Center "Introduction to Robotic Technology Kernel (RTK)", May 2018
  3. ROS - Robotic Operating System (Open Source). documentation for ROS 1 and ROS 2 distributions,

KEYWORDS: Autonomy; Self-driving; Convoy; Leader/Follower; Image Processing; Sensing


The Navy Topic above is an "unofficial" copy from the Navy Topics in the DoD 23.2 SBIR BAA. Please see the official DoD Topic website at for any updates.

The DoD issued its Navy 23.2 SBIR Topics pre-release on April 19, 2023 which opens to receive proposals on May 17, 2023, and closes June 14, 2023 (12:00pm ET).

Direct Contact with Topic Authors: During the pre-release period (April 19, 2023 through May 16, 2023) proposing firms have an opportunity to directly contact the Technical Point of Contact (TPOC) to ask technical questions about the specific BAA topic. Once DoD begins accepting proposals on May 17, 2023 no further direct contact between proposers and topic authors is allowed unless the Topic Author is responding to a question submitted during the Pre-release period.

SITIS Q&A System: After the pre-release period, until May 31, (at 12:00 PM ET), proposers may submit written questions through SITIS (SBIR/STTR Interactive Topic Information System) at by logging in and following instructions. In SITIS, the questioner and respondent remain anonymous but all questions and answers are posted for general viewing.

Topics Search Engine: Visit the DoD Topic Search Tool at to find topics by keyword across all DoD Components participating in this BAA.

Help: If you have general questions about the DoD SBIR program, please contact the DoD SBIR Help Desk via email at [email protected]

Topic Q & A

   A. These are the sensors which are used by the NMESIS Leader Vehicle and ROGUE-Fires autonomous vehicle. Additionally, the radio is the MPU5, with S-Band being the preferred frequency band module, L-Band optional.
  • GNSS-850 Product Sheet -
  • RR0030114 RR-N-140 DATASHEET
  • VLP16 Datasheet Rev-A
  • Delphi ESR -

  • [ Return ]