Mine Drift Prediction Tactical Decision Aid (TDA)
Navy SBIR 2013.2 - Topic N132-136
ONR - Ms. Lore Anne Ponirakis - [email protected]
Opens: May 24, 2013 - Closes: June 26, 2013

N132-136 TITLE: Mine Drift Prediction Tactical Decision Aid (TDA)

TECHNOLOGY AREAS: Information Systems, Battlespace

ACQUISITION PROGRAM: PMS-495; SHD-12-04 Detection and Neutralization of Surface Drifting Mines

OBJECTIVE: To develop a Mine Drift Prediction Tactical Decision Aid (TDA) to enable Mine Counter Measure (MCM) planning and operations in areas threatened by surface and near-surface drifting mines.

DESCRIPTION: Drifting mines have been used intentionally by adversaries and there is evidence that drifting mines are an important part of access denial strategies, especially in deep water environments. The Mine Drift Prediction TDA will predict drift trajectories using real-time observations, oceanographic model data (if available) and other sources to provide intelligent preparation of the environment before operations commence, and situational awareness during operations. The TDA will comprise software tools to 1) allow optimal deployment of Mine Counter Measure (MCM) assets for search and/or environmental information gathering and to 2) generate a ship maneuver plan which minimizes risk of engaging drifting threats. The deliverable is a stand-alone software service compatible with Mine Warfare (MIW) Command and Control (C2) (e.g., the Mine Warfare and Environmental Decision Aids Library � Enterprise Architecture (MEDAL-EA), Environmental Post Mission Analysis (EPMA) and Net-centric Sensor Analysis for MIW (NSAM)) and an operator training package. The Mine Drift Prediction TDA must provide support for MCM planning and maneuver across a spectrum of connectivity conditions ranging from ideal (high bandwidth) to austere (no connectivity).

PHASE I: Based on current state-of-the-art knowledge of oceanographic phenomena, develop concepts and investigate methods to build and validate a model to predict the drift of surface and near-surface drifting objects in the ocean. Develop concepts and investigate methods to build tools to 1) allow optimal deployment of MCM assets for search and/or neutralization, and to 2) generate a ship maneuver plan which minimizes risk of engaging drifting threats. The concept design should at a minimum address the plan for software modularity, modeling of the relevant oceanographic phenomena, development of algorithms, implementation of computer code, and methodology for estimation of prediction uncertainties. The contractor shall conduct a kickoff meeting and a final review at ONR.

Develop an algorithmic strategy and software modules addressing topic objectives that are compatible with Navy Mine Warfare (MIW) Command and Control (C2) software systems (e.g., MEDAL-EA, EPMA and NSAM). Develop system architecture for the several components of a Mine Drift Prediction TDA compatible with existing MIW C2. Describe and formulate the mathematical models for drift prediction and necessary oceanographic models and/or observations required to initialize and run the model; describe and formulate mathematical models for optimal deployment of MCM assets for search and environmental observations; and, describe and formulate models for ship maneuver plans to minimize risk of engaging detected or simulated drifting threats.

PHASE II: Construct and demonstrate the operation of a prototype TDA. Develop a complete set of TDA algorithms and implement in computer code modules addressing each of the components of the problem described in Phase I. Develop plans for and implement in computer code the ability to visualize the results. Test simulation predictions using available data from the literature or other existing data. Develop interface control documentation for MIW C2 MEDAL-EA, EPMA and NSAM and control software and demonstrate compatibility with those systems. The contractor shall conduct a kickoff meeting, two interim project reviews and a final review at ONR.

PHASE III: Transition MIW C2 compatible modular software to US Navy and/or US Marine Corps.

PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: Models for prediction of the drift trajectories of objects floating at or near the ocean surface have application to both DoD and civilian search and rescue, and for reconstruction of maritime accidents and related situations.

REFERENCES:
1. Zhijin Li, Yi Chao, John D. Farrara, James C. McWilliams, Impacts of distinct observations during the 2009 Prince William Sound field experiment: A data assimilation study, Continental Shelf Research, Available online 8 July 2012, ISSN 0278-4343, 10.1016/j.csr.2012.06.018.

2. Stone, L.D., Keller, C.M., Kratzke, T.M., Strumpfer, J.P., Search analysis for the underwater wreckage of Air France Flight 447, Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference, 5-8 July 2011.

KEYWORDS: Mine Countermeasures; Ocean Surface Currents; Drifting Mines; Ocean Waves; Ocean Circulation Models; Optimal Search

** TOPIC AUTHOR (TPOC) **
DoD Notice:  
Between April 24 through May 24, 2013, you may talk directly with the Topic Authors (TPOC) to ask technical questions about the topics. Their contact information is listed above. For reasons of competitive fairness, direct communication between proposers and topic authors is
not allowed starting May 24, 2013, when DoD begins accepting proposals for this solicitation.
However, proposers may still submit written questions about solicitation topics through the DoD's SBIR/STTR Interactive Topic Information System (SITIS), in which the questioner and respondent remain anonymous and all questions and answers are posted electronically for general viewing until the solicitation closes. All proposers are advised to monitor SITIS (13.2 Q&A) during the solicitation period for questions and answers, and other significant information, relevant to the SBIR 13.1 topic under which they are proposing.

If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at (866) 724-7457 or email weblink.