Blast dosimeter for monitoring and documenting Blast exposure for Breacher and route clearance personnel
Navy SBIR 2012.3 - Topic N123-152 MARCOR - Mr. Paul Lambert - [email protected] Opens: August 27, 2012 - Closes: September 26, 2012 N123-152 TITLE: Blast dosimeter for monitoring and documenting Blast exposure for Breacher and route clearance personnel TECHNOLOGY AREAS: Biomedical, Battlespace, Human Systems ACQUISITION PROGRAM: Warfighter PPE EOD ensemble RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected. OBJECTIVE: Develop a sensor that can be incorporated into the current protective vests to measure and record blast over pressure and acceleration data that Marines are subjected to during blast type events. DESCRIPTION: Develop a affordable, lightweight sensor that can record and document exposure to blast type events. The sensor should possess the following characteristics: Small, lightweight, low power capability to detect, measure and record concussive forces to personnel of interest. The unit should operate for 30 days continuously without recharging and provide 360 degree monitoring for blast overpressure coverage. Key design elements are: Desired capabilities: PHASE I: Select from available technologies for monitoring and recording blast overpressure and acceleration. Perform trade study to optimize design against design criteria, identify trades for interfaces to perform measurement and threshold alert on a timely basis. Prepare plan as to how the sensor will be developed tested and manufactured in Phase II and III. PHASE II: Integrate technologies identified in Phase I in a prototype unit. PHASE III: Present manufactured item for first article test. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: A blast sensor could be used by anyone in the private sector that is exposed to blast REFERENCES: 2. Taylor, Sir Geoffrey Ingram, "The formation of a blast wave by a very intense explosion. I. Theoretical discussion," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 201, No. 1065, pages 159 - 174 (22 March 1950). 3. Chavko, M. et al., Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J Neuroscience Methods, 159:277-281, 2007 4. Bradley, J., Shock Waves in Chemistry and Physics, Chapman and Hall, London, 1962. 5. DARPA point paper on Blast sensors KEYWORDS: Blast sensor; Overpressure; electronics; Acceleration meter; data recorder; explosive blast;
|